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Robust Controller Design
Using Frequency Domain Constraints
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and
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This paper describes a method for designing a controller with improved robustness with respect to truncated
flexible modes. The approach involves minimization of a quadratic performance index subject to constraints in
the frequency domain. The frequency domain criteria are chosen so as to sufficiently attenuate the high fre-
quency response of the full dynamic system while attempting to maintain the overall performance of the closed-
loop system. The resulting constraint relationships are cast into a functional minimization framework and
parameter optimization techniques are used to determine the solution.

Introduction

THE application of optimal control theory to physical
problems relies on the fidelity of the mathematical model

used to describe the physical system. Since a perfect model can
never be obtained for any physical process, the sensitivity of
the control design to modeling errors and parameter variations
is always a key issue. In general, these modeling errors can be
broken into four types: errors in model order, errors due to
neglected disturbances, errors due to neglected nonlinearities,
and parameter errors.1

For large, flexible space structures, one of the most promi-
nent sources of modeling error is the deletion of modes in the
formation of the design model. The motivation for this modal
truncation can be from either modeling or control design con-
siderations. Modeling problems arise from the fact that the
dynamic characteristics (natural frequencies and mode shapes)
of complicated space structures cannot be determined with the
same accuracy as for simple structures, such as uniform beams
or membranes. A spacecraft model is usually constructed with
a structural analysis problem such as NASTRAN and relies on
the finite element method2"4 or spatial discretization.5'6 This
approach, referred to as substructure synthesis,7 requires that
the overall structure be broken into separate substructures
which are modeled individually and then reassembled into a
total system model. Spatial discretization of each substructure
separately implies a truncation at that level, with each infinite-
dimensional subsystem being replaced by a finite-dimensional
one.

Control design problems result from the computational dif-
ficulties inherent in the application of control algorithms to
high-order models. Although a wide variety of techniques ex-
ist for the control of dynamic systems, their practical uses
have primarily been restricted to low-order models. In general,
these approaches are subject to greatly increasing complexity
and computer run time with decreasing computational ac-
curacy as the model size increases. Because of this, modal
truncation often occurs at a system level in order to obtain a
reasonably sized design model. This process is often guided by
modeling limitations, i.e., the low-frequency (more accurately
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known) modes are retained, and the high-frequency modes are
deleted.

Because of the light damping present in space structures,
and their severe performance requirements, these modeling er-
rors can cause significant problems. A control system design
based on a reduced-order model must be used with an infinite-
dimensional physical system. In the full-order, closed-loop
system, the unmodeled, residual mode effects, commonly,
called control and observation spillover, can cause a severe
loss of performance or even instability.8'9

Several authors have studied techniques for synthesizing
controllers that are robust with respect to these types of
modeling errors, either through better model truncation
techniques or better controller design procedures. This paper
proposes a controller design procedure that meets classical fre-
quency domain constraints within the framework of a
modern, optimal control design. This permits sufficient
attenuation of the high-frequency response of the full dynamic
system while maintaining overall closed-loop performance.
Although the numerical example given will illustrate the
technique for the case of truncated modes, the procedure
presented is general enough to handle other classes of model-
ing error.

Robust Controller Design
The problem to be considered is the design of a control

system for a highly flexible space structure. It is assumed that
a reduced-order design model of this structure has been
developed through the techniques discussed earlier, and is of
the form

XD =ADxD+BDu + DDv (1)

where XD is the design model state, u is the control, and v is a
white, Gaussian noise vector with zero mean. The mea-
surements for this system are assumed to be linear combina-
tions of the states and are modeled by

(2)

where ZD is the measurement vector, and w is a white, Gaus-
sian noise vector of zero mean. The system is assumed to be
both controllable and observable.

The task at hand is the design of a suitable controller for
this sytem. As a measure of the quality of candidate designs, a
quadratic performance index is assumed. This index is of the
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form
/= lim — (3)

where the matrices Q and -R are specified in the problem
description. We will further assume that R is positive definite
and Qis positive semidefinite.

The optimal solution to this problem (assuming no model-
ing error) is well known.10'11 It consists of a control law and
estimator which, in theory, can be designed independently.
The control law

u = (4)

is obtained by solving a steady-state Riccati equation

The dynamics of the estimator are given by

with the estimator gain

obtained from the filter form of the Riccati equation

is based on linear feedback of the estimates of the design
states. The gain

(5)

(6)

(7)

(8)

(9)

This filter provides the best weighted least-squares estimate
of XD, given a known set of noise covariances. In terms of the
design model, RE is the covariance matrix of w, and QE is the
co variance of DDv, or equivalently,

(10)

where Qv is the covariance matrix of v alone.
To account for the potential effects of spillover due to un-

modeled, high-frequency modes, a modified optimization
problem will be formulated. The spillover effects will be ad-
dressed by the specification of frequency domain constraints
which appropriately attenuate the high frequency response of
the full dynamic system.

Frequency Domain Constraints
Classical frequency domain techniques have traditionally

been used to provide a decreased sensitivity in the closed-loop
system, with respect to variations in the plant. Since the
primary concern is the effects of uncertain high-frequency
modes, a constraint based on a frequency domain charac-
terization of plant uncertainty is well motivated.
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Fig. 1 Controlled spacecraft in frequency domain.

A paper by Kosut and Salzwedal12 examined the selection of
frequency domain measures of stability and robustness for the
special problem of large space structures. The system under
consideration is the one shown in Fig. 1, where the spacecraft
dynamics have been broken into both design and residual
modes. In this figure, the transfer functions for the design
model, residual modes, and control system (including both
control law and estimator) are given by HD(s), HR(s), and
Hc(s), respectively. The Laplace domain representations of
the reference input, control input, and system output
(measurements) are given by UR(s), Uc(s) and Z(s).

The specific form of the transfer functions can be deter-
mined from the problem statement. The design and residual
modes are assumed to be dynamically uncoupled

XD —ADxD + BD u

*R=ARxR+BRu

and yield transfer functions given by

HD(s).=MD(sID-AD)-lBD

HR(s)=MR(sIR-AR)-lBR

(U)

(12)

(13)

(14)

(15)

where the matrices ID and IR are appropriately dimensioned
identity matrices and s is the Laplace variable.

For the transfer function of the controller, a linear feedback
form is assumed

u = GxD (16)

based upon an estimator for the design states

(17)

Note that this form is consistent with the optimal control
law and estimator shown earlier, but the selection of the gains
G and K is not limited to the optimal gains, GD and KD. With
these equations, the closed-loop system transfer function
becomes

Hc(s)=G(sID-AD-BD (18)

This frequency response description can provide guidelines
for selecting G and K so as to decrease the sensitivity of the
design to the residual modes. To do this, the feedback loop
can be broken at the point indicated by the X in Fig. 1. If no
residual modes were present, the open-loop transfer function
at this point would simply be Hc(s)HD(s). The stability of
the nominal system could then be guaranteed by requiring the
eigenvalues of AD + BDG and AD —KMD to have negative real
parts (i.e., a stable controller and estimator).

When residual modes are present, the stability of the closed-
loop system is no longer guaranteed. Consideration of the per-
turbed system shows that its open-loop transfer function at the
same point is -Hc(s)'[HD(-s)+HR(s)]. Expressed as
HC (s)HD (s) + HC (s)HR (s)y the second term can be iden-
tified as an additive perturbation to the nominal transfer func-
tion, Hc(s)HD(s). When model errors can be characterized
in this fashion, frequency domain bounds can be developed
for guaranteeing stability. For this work, the two robustness
tests given by Kosut and Salzwedal12 will be used, and are
restated:

Robustness Test 1

HR(ju)} (19)

for all w>0, ensures stability provided Hc(ju)HD(ju) and
Hc(ju)HR(ja)) are stable. The t e r m s • & [ • ] andxz[ - ] refer to
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the maximum and minimum singular values of a matrix.13

These are defined in terms of the maximum and minimum
eigenvaluesof H*H as

(20)

(21)

where (*) denotes complex conjugate transpose.

Robustness Test 2

a[/+Hc(j<*)HD(yco)] /&[Hc(yco)]>cf.[HR (yco)] (22)

for all co>0, ensures stability under the same conditions as
above, prqvided Hc(ju\ is stable, i.e., all the eigenvalues of
AD + BDG-KMD have negative real parts.

In interpreting these tests, it is instructive to consider
a single-input single-output system. The quantities
Hc (j<&)'HD (yco) and Hc(jw)HR (yco) are then scalars, and the
singular values are just the absolute values of the scalars.
Robustness Test 1 becomes

\l+Hc(ju)HD(jv)\> \Hc(ju)HR(j<*)\ (23)

Now examine the classical test for system stability. The full-
order closed-loop system will be stable if the roots of the
characteristic equation have negative real parts. Equivalently,
the poles of the closed-loop transfer function (i.e., the zeros of
the denominator) must lie in the left half of the complex plane.
Remembering that HCHD+HCHR is the open-loop transfer
function, the stability of the system requires

I I +Hc(ja)HDy<*) +Hc(ju}HR(ju) I >0 (24)

for all co>0. Applying the triangle inequality

\Qi+a2\''>\ai\ — \a2\ (25)

to the respective quantities yields

I I +Hc(j<*)ffnU<») +Hc(ja)HR (yco) I

> 11+ HC(j<*)PD (yco) I - \HC(j<*)HR (yco) I (26)

Thus, a sufficient condition for Eq. (24) to hold is that

\\+Hc(jt»}HD(ju) l- (27)

for co >0. This is precisely the robustness test given in Eq. (23).
The multi-input results follow from generalizations of both

the stability criterion and triangle inequality to the multi-
input, multi-output case. The absolute values are replaced by
matrix norms, as expressed by the singular values. The max-
imum and minimum singular values of a matrix are measures
of its maximum and minimum "size," respectively. The
robustness test given in Eq. (19) is thus comparing the
minimum size of the nominal transfer function to the max-
imum size of the perturbation, at each frequency.

The second robustness test is more conservative and, is im-
plied by the first. However, the second test is also more useful
in the space structure design synthesis problem. The right-
hand side contains the residual modes transfer function which
is, in general, unknown. On the other hand, the characteristics
of the control system are known once the control gain, G, and
filter gain, K, are chosen. For a specific set of gains and a
given design model, the left side of (22) can be evaluated. By
seeking gains so that this quantity is maximized (or at least
greater than a specified value), a stable, robust design can be
found. This idea forms the underlying concept behind many
model error-compensation techniques (e.g., frequency-shaped

cost functions,14'15 filter-accommodated control16), as well as
the basis for the current approach.

Problem Formulation and Solution
The problem to be solved can now be stated in terms of the

optimization criteria and constraints. It is desired to find the
gains G and K to be used in a control law

(28)

(29)

(30)

(31)

f w (32)

Furthermore, the solution is constrained to satisfy a frequency
domain inequality of the form

and estimator

x=ADx+ BDu + K(z-MDxD)

so that a given cost functional

/= lim —E\
T-*ao T JO

is minimized for the system

XD =ADxD + BDu + DDv

>7(co) (33)

The function 7(0?) is chosen so that y ( v ) > a [ H R ( j w ) ] at all
co>0.

The general form of the problem assumes that both the
regulator and estimator gains will be determined in the solu-
tion. However, this formulation can also be used to determine
the best control law for a specified estimator, or the best
estimator for a specified control law. These approaches are
appropriate, since it is the combination of control and obser-
vation spillover that causes loss of performance, and reducing
either effect separately reduces their joint effect.17 The two
situations can be handled as special cases of the general
technique.

One way of solving this problem is by parameter optimiza-
tion. A set of problem unknowns are identified for which the
optimization criteria and constraints can be evaluated. After
specifying an initial guess for these unknowns, a digital com-
puter algorithm is used to refine the guess until the optimal
solution which satisfies the constraints is found.

For the problem identified in Eqs. (28-33), the most
straightforward selection of unknowns is the gains, G and K.
If the dimensions of the design model, inputs, and
measurements are n> p, and m, respectively, the total number
of unknowns will be np (for G) plus nm (for 70; The number
of unknowns increases only linearly with increases in the
design model dimensions, and is small fqr low-order prob-
lems. Alternative formulations of the problem are given in
Ref. 18.

In order to perform the optimization, the performance in-
dex given in Eq. (30) must be evaluated for a given set of
gains. To do this, define

Q=

A =

Q 0
0 GTRG

A B G

KMD AD+BDG-KMD

(34)

(35)
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DD 0

0 K

Qv 0

o Q L
0

KT (36)

where Qv and Qw are the covariances of i> and w, respectively.
Then the performance index can be evaluated as10

J=tr[PV] (37)

where tr [ • ] denotes the trace of a matrix. The matrix P satis-
fies a Lyapunov equation

(38)

which can be solved with existing computer routines.10'19 Note
that optimization of the expression given in Eq. (37) for the
unconstrained case would yield the standard optimal LQG
regulator and estimator.

Some difficulties may be encountered in applying this ap-
proach to multi-input multi-output examples. The singular
value norms are nondifferentiable with respect to the param-
eters at points where the singular values are not distinct.
This can cause problems in the parameter optimization
because of the difficulty in computing gradients. Approaches
have been proposed for dealing with this problem.20'21 Alter-
natively, it is possible to formulate the inqualities with matrix
norms other than the singular values.22 For this paper, the
numerical example will be restricted to single-input single-
output. Applications with multi-input multi-output systems
will be addressed in future papers.

Numerical Example
In order to demonstrate the design synthesis techniques

outlined, a numerical example will be presented. The intent of
this example is to illustrate some of the concepts and trade-
offs inherent in the large, space structure controller design
problem. However, in order to avoid the complexities in-
volved in the myriad configurations presently being studied, a
more generic structure will be used.

The system under study is the simple, uniform beam il-
lustrated in Fig. 2. Both ends of the beam are mounted in
guides which permit translational motion relative to the sup-
port, but maintain zero slope at both ends. The dynamics
under consideration are those of the beam's transverse
displacement at points along the beam as measured from a
horizontal reference line. This displacement is denoted as
y(x,t), where x is the distance along the beam measured from
the left end, and t is time. The beam parameters M (mass per
unit length), / (moment of inertia), and E (modulus of elastic-
ity) are assumed to be constant throughout. The length of the
beam is L. ^

The beam dynamics are modeled by the Euler-Bernoulli par-
tial differential equation

Mytt(x,t) + EIyxxxx(x,t) =F(x,t) (39)

where the subscripts / and x indicate differentiation with
respect to the indicated variable. The quantity F(x,t) re-

** t} u«t»

Iv x t

Z (t)

t M
FT i

< iu 1

1 \-
1
1
1
1z ™ - i

presents the force exerted on the beam, as a function of posi-
tion and time.

The mass properties of the beam are chosen, primarily for
convenience, as M=EI=2/Tr and L = TT. With these values,
the deflection is given by

oo

y(x,t) = (V2/2)?0 (0 + £ cos(nx)qn (0 (40)
71=1

where qn(t) satisfies

/i = 1,2,...

(41)

(42)

A time- varying control force, u ( t ) is assumed to be acting
at a distance, du, as indicated in Fig. 2. The modal frequencies
are given by o)n=n2, and an assumed model damping value of
£ = 0.005 will be used.

The objective of the control problem will be to keep the
beam close to the reference position, while minimizing the
energy in the modes and the control energy expended. For
simplicity, a single force actuator and single position sensor
will be used. To "'maintain controllability and observability,
and to adequately illustrate the effects of spillover, it is
necessary to locate the actuator and sensor sufficiently far
from the nodes of the flexible modes. In view of the
modeshapes, an appropriate position for both is at the left end
of the beam (i.e. , du = 0). Every mode is both controllable and
observable at this location.

The equations of motion for the design model can now be
written. Consistent with the previous discussions on modeling,
only the lowest- frequency modes will be retained in this
model. For this example, this will consist of the rigid body
mode and first two flexible modes, yielding a sixth-order
model in the form

XD =ADxD+BDu + DDv

ZD=MDxD + w

Table 1 LQG controller eigenvalues

(43)

(44)

Eigenvalues Frequency Damping

Regulator

Estimator

-1.9668 -± i 1.8360
- 0.9436 .±i 0.9822
- 0.6262 ±/ 3. 9626
-0.1337±/ 3.9626
- 0.6193 ±/ 1.0957
- 0. 1265 ±i 3.9896

2.6869
0.9867
4.0118
0.5630
1.2586
3.9916

0.7320
0.0956
0.1561
0.2375
0.4920
0.0317

Table 2 Evaluation model eigenvalues, LQG controller
Eigenvalues Frequency Damping

Fig. 2 Simple beam with guided end conditions.

Design modes

Residual modes

-0.1312 ±i 0.3422
- 0.0943 ±i 0.98 16
- 0.5845 ±/ 1.1548
- 2.2170 ±i 1.2192
-0.1293±/ 3.9923
- 0.5479 ±i 3. 9416

0.03 11 ±i 9.0781
- 0.0473 dbf 16.0143
-0.1108±/25.0035
-0. 1730 ±/ 36.0008
- 0.2412 ±i 49.0000
-0.3178±/ 63.9994
- 0.4036 ±i 80.9991

0.5579
0.9861
1.2943
2.6324
3.9944
3.9795
9.0781

16.0144
25.0037
36.0012
49.0005
64.0002
81.0001

0.2351
0.0956
0.0452
0.8422
0.0324
0.1377

-0.0034
0.0030
0.0044
0.0048
0.0049
0.0050
0.0050
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(45)

' 0.000

0.000

0.000

0.000

0.000

0.000

1.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

-1.000

0.000

0.000

0.000

0.000

1.000

-0.010

0.000

0.000

0.000

0.000

0.000

0.000

0.000

- 16.000

0.000 "

0.000

0.000

0.000

1.000

-0.040

(46)

BD= [0.000 0.717 0.000 1.000 0.000 i.ooo]3

MD= [0.717 0.000 1.000 0.000 1.000 0.000]

(47)

(48)

The noise in the state equation is assumed to come from
noise in the actuator (i.e., DD = BD).

The performance index chosen for controller design must
reflect the objectives of the control problem, i.e., keeping the
beam close to the reference position, minimizing energy in the
modes, and minimizing control energy. To penalize the devia-
tion of the beam from the reference, it is sufficient to penalize
the square of the rigid body position, qQ. The energy in the
modes is a combination of kinetic energy and potential energy:

Energy = (49)

Minimization of the control energy is handled by a penalty on
the square of the control effort.

The three components can be combined within the frame-
work of the standard LQG infinite-time regulator problem

1 P T

/= lim —— E\ [x£QxD
T— 00 T JO

(50)

with/?= 1 and Q = diag[ 100., 1., 1., 1., 16., 1.]. Note that the
beam rigid body position is weighted by a factor of 100. This
particular selection of weightings was chosen so as to ade-
quately illustrate the effects of spillover.

The standard LQG controller for this system takes the form
of a feedback control law based on estimates supplied by a
Kalman filter. The noise sources are assumed to be uncor-
related with unitary covariances, i.e., E(vvT] = l,
E{ WWT] = 1. The control gain GD and filter gain KD are then
given numerically by

GD=[-10.000 -8.040 -0.942 -0.947 -4.927

-0.586] (51)

KD=[ 1.152 0.707

0.258]T

0.692 0.702 0.203

(52)

Using these gains, the value of the performance index given
in Eq. (50) is determined to be 366.18. The eigenvalues of the
resulting closed-loop system are given in Table 1.

These regulator and estimator designs are optimal for the
sixth-order design model. Of greater interest however, is the
performance of this controller in the full-order system, in-
cluding the residual modes. To make this assessment, a finite
set of residual modes must be identified. For this example, the

residual system will be chosen as the next seven lowest fre-
quency modes. The evaluation model will therefore consist of
the first ten modes of the beam.

If no control or observation spillover were present, the
eigenvalues of the full-order system would be the eigenvalues
of the regulator, estimator, and the open-loop residual modes.
However, these eigenvalue locations are perturbed by the
effects of spillover. The eigenvalues resulting from implement-
ing the LQG gains in the full-order system are given in Table
2 . : ' . - ' - - - ' . . ' • - - . . ' .

Note that the full-order system is actually destabilized by
the optimal LQG controller. In particular, the first residual
mode eigenvalue has been shifted into the right half-plane.
This is because the control action applied at the left end of the
beam excites this mode (control spillover), and the corre-
sponding motions are seen in the position measurements
(observation spillover). From a stability standpoint, this con-
troller design is clearly unacceptable.

Robust Controller Design Example
In the previous section, it was shown that the standard LQG

technique for designing reduced-order controllers may pro-
duce controllers that destabilize the full-order system. In this
section, the concept of frequency-shaped controller design is
illustrated.

The frequency domain quantities of Eq. (22) are illustrated
in Figs. 3 and 4 for the previous LQG design. One can see that
the frequency domain robustness condition does not hold,
with the violation occurring at the peak of the first residual
mode, near 9 rad/s. To address this, a constraint of the form
in Eq. (33) will be written. In a typical design problem, some

Table 3 Evaluation model eigenvalues, frequency-shaped regulator
and estimator

Design modes

Residual modes

Eigenvalues

-0,1368 -±i 0.5381
- 0.0956 ±i 0.9698
- 0.6523 ±i 0.9416
- 0.6835 ±i 1.6555
-0.1893 ±/ 3.8755
-0.1171 ±/ 4.0338

0.0089 ±i" 9.0148
- 0.0680 ±i 16.0023
-0. 1201 ±/ 25.0003
-0.1776±/ 35.9998
- 0.2437 ±i 48.9995
-0.3 192 ±i 63.9992
- 0.4045 ±i 80.9990

Frequency

0,5545
0.9745
0.1455
1.7910
3.8801
4.0355
9.0148

16.0024
25.0006
36.0002
49.0001
64.0000
81.0000

Damping

0.2411
0.0981
0.5695
0.3816
0.0488
0.0290
0.0011
0.0042
0.0048
0.0049
0.0050
0.0050
0.0050



MARCH-APRIL 1987 CONTROLLER DESIGN USING FREQUENCY DOMAIN CONSTRAINTS 163

sort of approximation would be used for the bounding func-
tion 7(00) for the residual modes (or other modeling errors).
For simplicity, this example will use the constraint

[ 1 + Hc(ja)HD (j<*) I / \HCC/w) I I > 1.4125 (53)

applied at co = 9 rad/s. The value of 1.4125 (3dB) is chosen so
as to sufficiently bound the first residual mode. The bounding
function would generally be a function of frequency, but ap-
plying this constraint at this one frequency was found to be
sufficient for this problem. The weighting matrices of the per-
formance index are the same as those specified for the LQG
controller.

This problem was solved via a standard, constrained
parameter optimization solution package.23'24 The optimal set
of gains satisfying the frequency domain constraint were

found to be

G=[ -4.440 -2.600 -0.3990.3590.138 -0.347] (54)

K=[ 1.021 0.532 0.8120.4420.167 0.560]T (55)

The value of the performance index for these gains is
7=401.32. This is only a modest increase compared to the
LQG design (7=366.18). However, Fig. 5 shows that the fre-
quency domain constraint is now met by this design. Hence,
asymptotic stability of the full-order system is guaranteed, as
can be verified from the eigenvalues of the evaluation model
(Table 3).

Note that this technique offers significant latitude in selec-
tion of the controller gains. The only requirements placed on
the gains is that they stabilize the controller transfer function

1-30.

O

FREQUENCT - (RflD'SEO

Fig. 3 a II + HcQu) I HD{ju) \ /1J/c(/u) I for LQG controller.

FREQUENCY - CRAD'SEO 05'18'83

Fig. 4 a \HR(ju>) I for residual modes 4 through 10.
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ooT
FREQUENCT - (RflD'SEC)

Fig. 5 II + Hc(jw)HD(/«) I/ \Hc(jw) I for frequency-shaped regulator and estimator.

and satisfy the frequency domain criteria. This permits signifi-
cant optimization of the performance index over a wide set of
gains. In fact, it can be shown18'25 that the gains computed for
this example are not even in the class of optimal LQG gains,
i.e., they do not satisfy a Riccati equation for any selection of
weighting matrices. Nevertheless, they are the optimal solu-
tion for the constrained problem at hand.

To further illustrate this point, a much simpler design ap-
proach was tried. Using the LQG formulation, the control
penalty was increased until a design was found that met the
frequency domain constraint. The resulting design had a per-
formance index of /= 440.44 which is significantly poorer
than the more general solution (7=401.32). This illustrates
that the increased robustness comes from changes in the con-
trol problem emphasis, not just a general reduction in control
bandwidth.

Concluding Remarks
A procedure was presented in this paper for the design of

robust controllers in the presence of modeling errors. The ap-
proach combines a quadratic cost functional to measure per-
formance with frequency domain constraints for robustness.
The frequency domain constraints are chosen so as to
guarantee stability of the full-order closed-loop system for a
bounded class of residual modes. The resulting problem is fpr-
mulated and solved as a nonlinear, constrained, parameter op-
timization problem.

The technique was applied to the design of a controller for a
flexible beam. A standard LQG controller was found to yield
an unstable full-order closed-loop system due to the effects of
control and observation spillover. When the frequency do-
main constraint was applied, a stable controller was found
with only a modest increase in the value of the cost functional.
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